

Emerging discovery of large-scale VMS copper-zinc system at Valley of the Gossans

Follow-up exploration programs being fast-tracked, with a major helicopter EM survey commencing later this month and Trek sourcing a drill rig as soon as possible

Highlights

- Maiden drill program confirms potential for a significant VMS system at Valley of the Gossans with strong geological similarities to the Sulphur Springs Copper-Zinc Project, located 25km to the east (DEVELOP Global).
- VMS-style mineralisation confirmed in the bedrock below the significant 2km long soil anomaly recently defined by Trek.
- Highly encouraging laboratory results define multiple horizons with classic VMSstyle mineralisation and alteration in RC drilling:
 - 88m @ 17.0g/t Ag from 0m VRC001
 Inc. 4m @ 223g/t Ag from 20m
 - 25m @ 6.70g/t Ag from 112m VRC006
 Inc. 3m @ 0.75% Cu from 121m
 - 20m @ 4.17g/t Ag & 1.48% Zn from 171m VRC006
 Inc. 1m @ 5.99% Zn from 171m &
 6m @ 3.76% Zn from 184m
 - 7m @ 0.99% Zn from 149m VRC008
 - 70m @ 7.39g/t Ag from 0m VRC009
 Inc. 2m @ 0.40% Cu & 0.2g/t Au from 46m
- Actively exploring with soil sampling in progress to define the extents of the system.
- Helicopter EM survey scheduled for late October, to define significant conductive bodies related to massive sulphide mineralisation as immediate drill targets.
- Trek is in discussion with multiple drill contractors currently operating in the area, with the intention of commencing follow-up drilling as soon as possible.

Commenting on the results Trek CEO Derek Marshall said:

"The laboratory results have confirmed the positive indications from our maiden drill program at Pincunah that we announced in late July. The key takeaway for investors is that we now have enough evidence to be very confident that the Valley of the Gossans Project is likely to be large-scale VMS copper-zinc base metal system with an extensive footprint that extends over 2km.

"The assays show that we intersected multiple horizons of classic VMS-style mineralisation and alteration, with highly anomalous zinc, copper and silver, plus multiple pathfinder elements that suggest we are right in the middle of a very fertile volcanic environment.

"The geological similarities to the Sulphur Springs Project, located 25km to the east, which is currently being developed by DEVELOP Global, are striking and show that we are in the right sort of environment to make a significant VMS-style base metal discovery. The typical 'clustering effect' which is commonly associated with VMS fields further supports this potential.

"VMS deposits often have a relatively small footprint, so the next step is to focus in within the broad anomalous zone on potential accumulations of massive sulphide mineralisation. We will do this by undertaking down-hole and airborne EM surveys to help us target VMS mineralisation at depth and along strike. This work will commence in the coming weeks and should provide us with targets to be tested with follow-up drilling.

"We currently have a team on the ground collecting soil samples along strike in order to define any extensions to the known alteration corridor. The helicopter EM survey is due to commence later this month and we are actively pursuing a drill rig to commence follow-up drilling as soon as possible."

Trek Metals Limited (ASX: **TKM**) ("**Trek**" or the "**Company**") is pleased to advise that its maiden drilling program at the 100%-owned **Pincunah Project** in the Pilbara region of WA (Figure 4) has delivered highly encouraging results, highlighting the potential for a large-scale VMS base metal system at the Valley of the Gossans (VOG) prospect.

The nature, grade and depth of the copper and zinc mineralization near the Chert marker horizon at Valley of the Gossans provide evidence of a mineralising process for a VMS-style copper-zinc system analogous to the Sulphur Springs deposits, 25km to the east.

Laboratory assay results confirm element associations identified previously in soils. Importantly multiple mineralised horizons were intersected with significant intersections included as Table 1.

The drilling program covered an extensive multi-element soil anomaly at VOG extending over a strike length of more than 2km, with a total of 13 holes for 2,662m of RC drilling completed. The drill rig, supplied by Orlando Drilling, then moved north-west to the Carlindi Prospect where a further 8 holes were drilled for 1,054m, for a total of 3,716m (Table 2 & Figure 5).

Given the encouraging results Trek has committed to multiple exploration activities related to exploring the emerging base metal discovery at Valley of the Gossans (Figure 2 & 3).

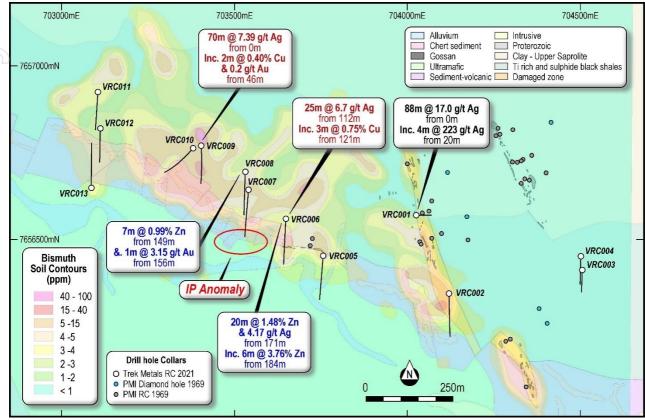


Figure 1: Valley of the Gossans RC Collar Locations with selected Significant Intercepts

Table 1 – Significant Drill Results

Hole ID	From (m)	To (m)	Width (m)	Zn %	Cu %	Ag g∕t	Au g/t	Significant Intercept
VRC001	0	88	88			17.01		88m @ 17.0g/t Ag from 0m
Inc.	20	24	4			223.15		inc. 4m @ 223g/t Ag from 20m
and	36	40	4		0.44	9.12		and 4m @ 0.44% Cu from 36m
VRC002	178	192	14			4.71		14m @ 4.71g/t Ag from 178m
VRC003	0	45	45			23.1		45m @ 23.1g/t Ag from 0m
Inc.	22	26	4			68.78		inc. 4m @ 68.8g/t Ag from 22m
VRC004	20	81	61			5.46		61m @ 5.46g/t Ag from 20m
Inc.	70	71	1	1.23		56.20		inc. 1m @ 56.2g/t Ag & 1.23% Zn
VRC006	32	80	48			4.73		48m @ 4.73g/t Ag from 32m
VRC006	112	137	25			6.70		25m @ 6.70g/t Ag from 112m
Inc.	121	124	3		0.75	26.30		inc. 3m @ 0.75% Cu from 121m
with	122	123	1		1.55			with 1m @ 1.55% Cu from 122m
VRC006	171	176	5	1.48		4.17		20m @ 4.17g/t Ag & 1.48% Zn from 171m
Inc.	171	172	1	5.99				inc. 1m @ 5.99% Zn from 171m
and	184	190	6	3.76				inc. 6m @ 3.76% Zn from 184m
with	185	187	2	7.25		4.55		with 2m @ 7.25% Zn from 185m
VRC006	220	230	10			5.09		10m @ 5.09g/t Ag from 220m
VRC008	149	156	7	0.99				7m @ 0.99% Zn from 149m
VRC008	156	157	1				3.15	1m @ 3.15g/t Au from 156m
VRC008	192	210	18			11.67		18m @ 11.7g/t Ag from 192m
VRC009	0	70	70			7.39		70m @ 7.39g/t Ag from 0m
Inc.	46	48	2		0.40		0.20	inc. 2m @ 0.40% Cu & 0.2g/t Au from 46m
VRC009	78	85	7			8.47		7m @ 8.47g/t Ag from 78
Inc.	81	82	1		0.33			inc. 1m @ 0.33% Cu from 81m
VRC009	140	163	23			7.82		23m @ 7.82g/t Ag from 140m
VRC010	76	96	20			5.10		20m @ 5.10g/t Ag from 76m
VRC010	165	178	13			4.58		13m @ 4.58g/t Ag from 165m
VRC012	146	167	21			5.44		21m @ 5.44g/t Ag from 146m
Inc.	154	156	2		0.62	16.15		2m @ 0.62% Cu & 16.1g/t Ag from 154m
VRC013	55	61	6			12.75		6m @ 12.7g/t Ag from 55m
VRC014	68	73	5				1.07	5m @ 1.07g/t Au from 68m
VRC021	44	48	4				0.57	1m @ 0.57g/t Au from 44m
VRC021	52	56	4				0.98	1m @ 0.98g/t Au from 52m

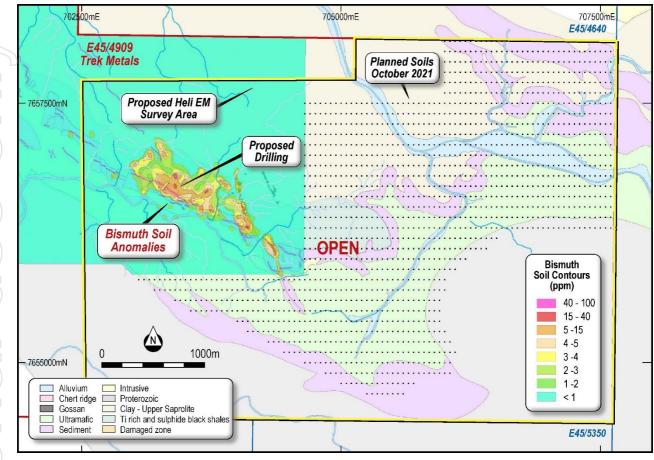


Figure 2: Forward work programs at the Valley of the Gossans prospect, showing planned soil sample locations as black dots (collection in progress), proposed helicopter EM survey outline in the yellow box and general location of the follow-up drilling of the emerging discovery below the significant >2km long multielement soil anomaly

Given the success of Trek's previous soil sampling program in defining the significant multi-element anomaly that has proven to be related to a large VMS system, the Company has elected to extend the soils coverage along strike to define the system extent (Figure 2).

A helicopter-borne EM program has been scheduled to commence in late October at Valley of the Gossans (Figure 2) and the greater Pincunah Project area (Figure 3) to define significant conductive bodies related to massive sulphide mineralisation as immediate drill targets.

Several down-hole EM contractors have been contacted with the intention of surveying two of the holes from the maiden drill program which were cased for DHTEM, to assist with targeting massive sulphide mineralisation.

The Company is in discussion with multiple drill contractors currently operating in the local area to secure a drilling rig that will allow it to commence follow-up drilling as soon as possible (Figure 3).

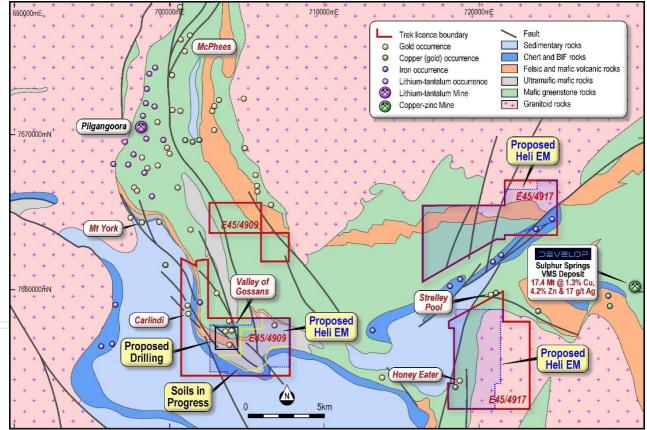
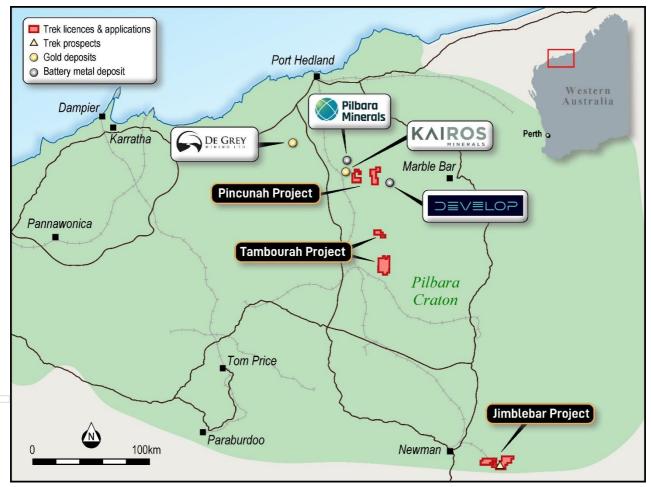


Figure 3: Forward work programs at the Pincunah Base Metal Project, highlighting the Valley of the Gossans prospect located 25km west of Sulphur Springs and the Honeyeater package (E45/4917) to be flown with helicopter EM

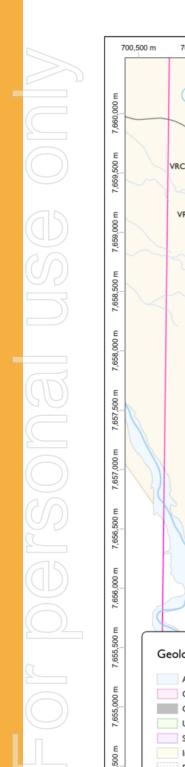


About the Pincunah Project

The Pincunah Project (E45/4909 & E45/4917) is located 100km south of Port Hedland and just 25km west of the Sulphur Springs owned by DEVELOP Global (ASX: DVP).

A soil program completed over the "Valley of the Gossans" (VOG) Prospect defined evidence of an extensive hydrothermal alteration over an area of 2.2km by 0.9km. Trek's maiden drill program confirmed that the soil anomalism was caused by a large-scale volcanogenic massive sulphide system, similar to that at Sulphur Springs.

The Company is actively progressing exploration both at the Valley of the Gossans prospect and the greater Pincunah Project.



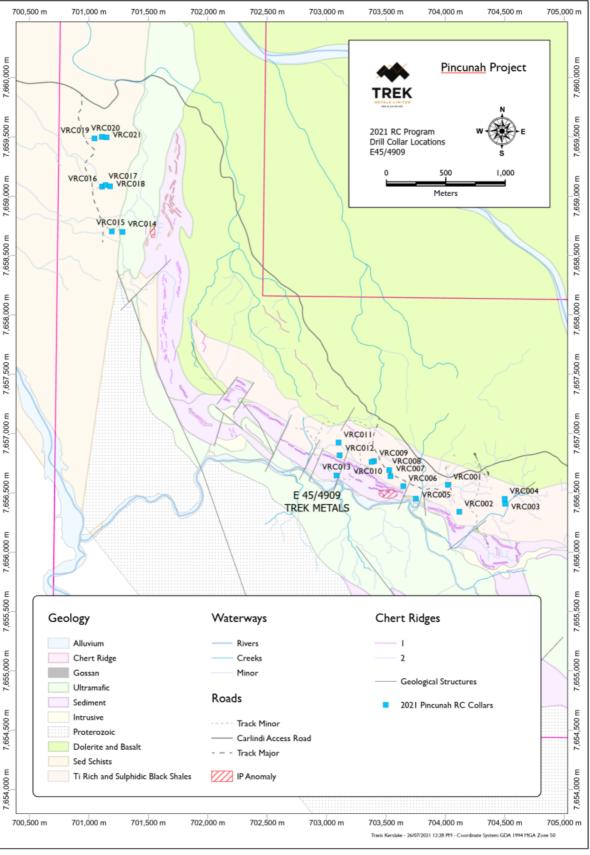


Table 2 – RC Collar Locations

		Easting	Northing	RL	Depth			
2	Hole ID	(m) ັ	(m)	(m)	(m)	Azimuth	Dip	Prospect
	VRC001	704,024	7,656,570	230	88	90	-60	VOG
	VRC002	704,119	7,656,343	239	232	180	-60	VOG
	VRC003	704,504	7,656,410	239	124	180	-60	VOG
	VRC004	704,501	7,656,451	243	160	180	-60	VOG
	VRC005	703,754	7,656,453	229	220	180	-60	VOG
	VRC006	703,648	7,656,559	240	238	180	-60	VOG
	VRC007	703,540	7,656,643	241	232	180	-60	VOG
	VRC008	703,529	7,656,694	238	220	180	-60	VOG
	VRC009	703,402	7,656,770	239	220	180	-60	VOG
	VRC010	703,381	7,656,763	234	232	225	-60	VOG
	VRC011	703,103	7,656,926	235	232	180	-60	VOG
	VRC012	703,112	7,656,819	236	232	180	-60	VOG
	VRC013	703,086	7,656,648	231	232	0	-60	VOG
	VRC014	701,285	7,658,701	226	220	90	-60	Carlindi Au
	VRC015	701,195	7,658,705	216	222	90	-60	Carlindi Au
	VRC016	701,113	7,659,083	206	100	270	-60	Carlindi Au
	VRC017	701,142	7,659,096	207	100	270	-60	Carlindi Au
	VRC018	701,180	7,659,085	210	100	270	-60	Carlindi Au
	VRC019	701,049	7,659,489	201	100	90	-60	Carlindi Au
	VRC020	701,110	7,659,502	205	100	90	-60	Carlindi Au
	VRC021	701,150	7,659,498	219	112	90	-60	Carlindi Au

Figure 5: Pincunah RC Collar Locations, with Valley of the Gossans collars in the south (VRC001-013) and Carlindi collars in the north (VRC014-021)

Approved for release by John Young – Executive Director.

ENDS

For further information contact:

INVESTORS:		MEDIA:		
John Young	Derek Marshall	Nicholas Read		
john@trekmetals.com.au	dmarshall@trekmetals.com.au	0419 929 046	0419 929 046	
REGISTERED OFFICES – TR	EK METALS LIMITED ARBN 124 462	826		
Australia 130 Stirling Highway North Fremantle	Bermuda Vallis Building, 4th Floor 58 Par-la-Ville Road	Postal Address Locked Bag 4 NORTH FREMANTLE		
WA 6159	Hamilton HM 11	WA 6159		

COMPETENT PERSONS STATEMENT

The information in this report relating to Exploration Results is based on information compiled by the Company's Chief Executive Officer, Mr Derek Marshall, a competent person, and Member of the Australian Institute of Geoscientists (AIG). Mr Marshall has sufficient experience relevant to the style of mineralisation and to the type of activity described to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Marshall has disclosed that he holds Performance Rights in the Company. Mr Marshall consents to the inclusion in this announcement of the matters based on his information in the form and content in which it appears.

DISCLAIMERS AND FORWARD-LOOKING STATEMENTS

This announcement contains forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions.

The forward-looking statements in this announcement are based on current expectations, estimates, forecasts and projections about Trek and the industry in which it operates. They do, however, relate to future matters and are subject to various inherent risks and uncertainties. Actual events or results may differ materially from the events or results expressed or implied by any forward-looking statements. The past performance of Trek is no guarantee of future performance.

None of Trek's directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

JORC Table Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 JORC Code explanation Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required 	 Commentary Drill sampling was conducted by Trek Metals Limited appointed technical personnel rig side The location of drill holes was located by handheld GPS RC drilling was sampled on either 1m splits generated by a rig mounted cyclone and cone splitter or 4m composite samples were collected by spear sampling green bags as per standard industry practice Samples were submitted to ALS in Perth for analysis. A standard dry, crust and pulverize was followed by a four-acid digestion finished with ICP-AES for a suite of 33 elements, additional analysis was undertaken to determine gold content utilizing Fire Assay with an Atomic-absorption finish
Drilling techniques	 cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Early-stage exploration drilling at the Pincunah Project has been undertake utilizing a track-mounted reverse circulation (RC) drill rig operated by Orlando Drilling Reverse circulation drilling used a face sampling bit
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Reverse circulation drilling recoveries were generally good, with any issues noted by supervising geologist and recorded in the database
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging descriptions were recorded by a Trek geologist rig side and validated and recorded in the database All holes are logged for their entire length
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of 	 The preparation of the RC samples follows industry practice with a ~2kg sample retained or dispatched for laboratory assay Field QA/QC was undertaken with duplicates and standards inserted in samples submitted to the laboratory. Additional laboratory QA/QC was completed on laboratory samples Sample sizes are considered appropriate for the material and analysis method

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading 	 Samples were analyzed with a four-acid digestion finished with ICP-AES fo a suite of 33 elements (including base metals of economic interest), additional analysis was undertaken to determine gold content utilizing Fire Assay with an Atomic-absorption finish. These techniques are considered full digest and appropriate for the elements of interest Certified Reference Material (standards), blanks and field duplicate samples
	 Including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	were inserted into the sample sequence on a regular basis, and performed within acceptable tolerances
Verification of	The verification of significant intersections by ather independent or alternative company.	Results have been verified by senior company management
sampling and assaying	either independent or alternative company personnel.	No twinned holes have been drilled to date
accajing	The use of twinned holes.Documentation of primary data, data entry	All data has been verified and included in the company database
	 Decementation of printing data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No adjustments have been made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of drill holes, rock and soil samples by Trek were recorded using handheld GPS which is considered appropriate at this stage of exploration Grid projection system is GDA94 MGA Zone 51 Surface RL data is collected using GPS
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling and sampling was targeting VMS style and/or gold mineralisation a is considered appropriate for this early stage of mineral exploration
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No orientation bias is considered to have an effect on the data, however th at this early stage of exploration the exact influence is unknown
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by the Company. Samples are freighted directly to the Laboratory with the appropriate documentation
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews of the sampling techniques or data has been carried out due to the early stage of exploration, it is considered by the Company that industry best practice methods have been employed at all stages of exploration to date

JORC Table Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Pincunah Project, located 50-70 km west of Marble Bar, comprises granted licence E45/4909 and E45/4917 that are held by ACME Pilbara Pty Ltd ("APP") which is a 100% owned subsidiary of Trek Metals Ltd. The project is covered by a Native Title application by the Nyamal People. L PL N050365 covers E45/4909 and UCL covers E45/4917
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Lynas Gold NL (1997): Carried out a conventional soil sampling program or grids ranging from 100 m by 50 m to 200 m by 50 m spacing PMI (1969) conducted RC and Diamond drilling in 1969 at Valley of the Gossans. 27 RC holes and 5 Diamond (BQ and NQ) were completed, largely focused on the outcropping gossans orientated in a NW-SE orientation, likely related to structurally hosted mineralisation
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Pincunah project is situated in the Archean Pilbara Craton which hosts several significant gold deposits shown on the regional map in the body of the announcement Mineralisation identified at Valley of Gossans is interpreted to be of volcanogenic massive sulphide (VMS) origin, similar in style to that of Sulphur Springs – which occurs within similar rocks approximately 25km to the east At Carlindi, gold-bearing shear zones are hosted in Archean siliclastic rock and the mineralisation style is interpreted to be similar to the Invincible gold deposit at St Ives, in Kambalda
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drilling details and results are included in the main body of the release in Tables 1 and 2 & Figures 1 & 5.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated 	 Primary significant intercepts reported were calculated based on an element of interest, a minimum width and maximum internal dilution criteri as per below: Ag > 1g/t (with a final intercept >4g/t) Zn > 0.5% Cu > 0.25% Au > 0.5g/t

Criteria	JORC Code explanation	Commentary
\mathcal{A}_{1}	 and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Minimum width of 5m for primary intercept Maximum of 2m internal dilution Any intercepts that combine 1m split and 4m composite samples have appropriate weighted averages applied No data truncations were performed No metal equivalents values have been reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The program has been designed to test the potential for the Plncunah area to host a VMS & orogenic gold style deposits Drilling was designed to drill perpendicular to the target trend The true width of mineralization is not currently known due to the early-stage nature of the exploration
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See relevant maps in the body of this announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data has been presented, with a full list of holes and associated plan provided in the body of the release
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Exploration data for the project continues to be reviewed and assessed and new information will be reported if material
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work is detailed in the body of the announcement